翻訳と辞書
Words near each other
・ Stieglitz (surname)
・ Stieglitz Lecture
・ Stieglitz Museum of Applied Arts
・ Stieglitz rearrangement
・ Stieler
・ Stielers Handatlas
・ Stielgranate 41
・ Stieller v Porirua City Council
・ Stieltjes constants
・ Stieltjes matrix
・ Stieltjes moment problem
・ Stieltjes polynomials
・ Stieltjes transformation
・ Stieltjeskanaal
・ Stieltjeskerk
Stieltjes–Wigert polynomials
・ Stien Kaiser
・ Stieng
・ Stieng language
・ Stieng people
・ Stiens
・ Stienta
・ Stientje van Veldhoven
・ Stiepel
・ Stiepel Priory
・ Stier
・ Stier (surname)
・ Stierbach (Kainsbach)
・ Stierbergsteich
・ Stierenberg


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stieltjes–Wigert polynomials : ウィキペディア英語版
Stieltjes–Wigert polynomials

In mathematics, Stieltjes–Wigert polynomials (named after Thomas Jan Stieltjes and Carl Severin Wigert) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, for the weight function 〔Up to a constant factor this is ''w''(''q''−1/2''x'') for the weight function ''w'' in Szegő (1975), Section 2.7.
See also Koornwinder et al. (2010), Section 18.27(vi).〕
: w(x) = \frac \exp(-k^2\log^2 x)
on the positive real line ''x'' > 0.
The moment problem for the Stieltjes–Wigert polynomials is indeterminate; in other words, there are many other measures giving the same family of orthogonal polynomials (see Krein's condition).
Koekoek et al. (2010) give in Section 14.27 a detailed list of the properties of these polynomials.
==Definition==

The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by〔Up to a constant factor ''S''''n''(''x'';''q'')=''p''''n''(''q''−1/2''x'') for ''p''''n''(''x'') in Szegő (1975), Section 2.7.〕
:\displaystyle S_n(x;q) = \fracx)
(where ''q'' = ''e'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stieltjes–Wigert polynomials」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.